Transportation, Mobility and Sustainability
Transportation, Mobility, Sustainability

- Assets
- Opportunities
- Priorities
Assets
Assets

• Narrow Residential Streets
• Small Lot Density
• Riparian Corridors, Green Space
• Tree Canopy
• Sidewalk Network
• Residual Roadway Capacity
• Location, Location, Location
Narrow Streets

Cheyenne, WY

Sustainable Design Assessment Team
Center for Communities by Design
Assets

Small Lot Density

Sustainable Design Assessment Team
Center for Communities by Design
Assets

Riparian Corridors, Green Space

West Creek

Sustainable Design Assessment Team
Center for Communities by Design
Assets

Tree Canopy

Sustainable Design Assessment Team
Center for Communities by Design
Assets

Residual Roadway Capacity

Sustainable Design Assessment Team
Center for Communities by Design
Assets

Location, Location, Location
Opportunities
Opportunities

• Reallocation of Street Space
• Burying Utilities
• Protecting Commercial Alleys
• Encouraging Pedestrians
• Developing Networks
• Encouraging Green Density
• Neighborhood Commercial Centers
• Setting the Stage for Transit
Reallocation of Street Space

Sustainable Design Assessment Team
Center for Communities by Design
Road Diets
Road Diet Objectives

• Improved safety
 – Traffic
 – Pedestrians
 – Bicycles

• Space
 – On-street parking
 – Bicycle lanes
4-Lane to 3-Lane Conversion

Sustainable Design Assessment Team
Center for Communities by Design
Iowa DOT Road Diet Safety Study 2005

<table>
<thead>
<tr>
<th>Road</th>
<th>Traffic Volume (MADT)</th>
<th>Mean (0.025, 0.975)</th>
<th>Road</th>
<th>Traffic Volume (MADT)</th>
<th>Mean (0.025, 0.975)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>190000</td>
<td>3.10 (2.90,3.30)</td>
<td>18</td>
<td>168000</td>
<td>2.15 (1.93,2.38)</td>
</tr>
<tr>
<td>2</td>
<td>328000</td>
<td>1.46 (1.34,1.59)</td>
<td>19</td>
<td>363000</td>
<td>2.20 (2.04,2.37)</td>
</tr>
<tr>
<td>3</td>
<td>194000</td>
<td>0.26 (0.22,0.30)</td>
<td>20</td>
<td>76000</td>
<td>0.21 (0.17,0.26)</td>
</tr>
<tr>
<td>4</td>
<td>221000</td>
<td>1.33 (1.23,1.45)</td>
<td>21</td>
<td>154000</td>
<td>0.62 (0.55,0.68)</td>
</tr>
<tr>
<td>5</td>
<td>304000</td>
<td>1.76 (1.52,2.04)</td>
<td>22</td>
<td>188000</td>
<td>1.20 (1.06,1.34)</td>
</tr>
<tr>
<td>6</td>
<td>290000</td>
<td>1.55 (1.40,1.71)</td>
<td>23</td>
<td>212000</td>
<td>0.48 (0.39,0.58)</td>
</tr>
<tr>
<td>7</td>
<td>130000</td>
<td>0.54 (0.40,0.70)</td>
<td>24</td>
<td>102000</td>
<td>0.50 (0.42,0.59)</td>
</tr>
<tr>
<td>8</td>
<td>175000</td>
<td>1.51 (1.37,1.64)</td>
<td>25</td>
<td>191000</td>
<td>1.36 (1.22,1.50)</td>
</tr>
<tr>
<td>9</td>
<td>381000</td>
<td>3.60 (3.37,3.85)</td>
<td>26</td>
<td>389000</td>
<td>3.10 (2.90,3.31)</td>
</tr>
<tr>
<td>10</td>
<td>298000</td>
<td>1.87 (1.57,2.20)</td>
<td>27</td>
<td>298000</td>
<td>0.53 (0.43,0.63)</td>
</tr>
<tr>
<td>11</td>
<td>62000</td>
<td>0.32 (0.28,0.37)</td>
<td>28</td>
<td>82000</td>
<td>0.76 (0.65,0.89)</td>
</tr>
<tr>
<td>12</td>
<td>242000</td>
<td>2.18 (2.03,2.35)</td>
<td>29</td>
<td>196000</td>
<td>1.52 (1.41,1.63)</td>
</tr>
<tr>
<td>13</td>
<td>361000</td>
<td>1.54 (1.41,1.68)</td>
<td>30</td>
<td>302000</td>
<td>2.99 (2.82,3.17)</td>
</tr>
<tr>
<td>14</td>
<td>266000</td>
<td>0.38 (0.30,0.47)</td>
<td>31</td>
<td>257000</td>
<td>0.58 (0.46,0.72)</td>
</tr>
<tr>
<td>15</td>
<td>267000</td>
<td>0.48 (0.39,0.57)</td>
<td>32</td>
<td>249000</td>
<td>1.53 (1.41,1.67)</td>
</tr>
</tbody>
</table>

6,000 – 36,000 vpd
Average Daily Traffic

Ridge Road

25,387

21,368
Burying Utilities
Commercial Alleys
Encouraging Pedestrians
Encouraging Pedestrians

• What is required by pedestrians?
• What are highest value investments?
Pedestrians don’t choose to walk based on facilities; they choose to walk based on environments.
Pedestrians

What Pedestrians Require

• Security – lighting, activity, law presence
• Safety – street crossings, sidewalks
• Destinations – places, identity
• People – people watching
Pedestrians

Highest Value Investments

• Crosswalks
• On-street parking
• Narrow streets
Networks

Sustainable Design Assessment Team
Center for Communities by Design
Network Characteristics

- All modes: bike, motor vehicle, transit
- Connectivity
- Redundancy
- Capacity
Network Benefits

- Encourage redevelopment
- Circulation, access
- Public safety, emergency response
- Walkability

Sustainable Design Assessment Team
Center for Communities by Design
Guide to the new Pearl

Portland Tribune
September 2003
- Simple routes
- High frequency service
- Neighborhood scale vehicles
Green Density
EPA Research on Smart Growth & Water

Scenario A:
1 unit/acre

Impervious cover = 20%
Runoff/acre = 18,700 ft³/yr
Runoff/unit = 18,700 ft³/yr

Scenario B:
4 units/acre

Impervious cover = 38%
Runoff/acre = 24,800 ft³/yr
Runoff/unit = 6,200 ft³/yr

Scenario C:
8 units/acre

Impervious cover = 65%
Runoff/acre = 39,600 ft³/yr
Runoff/unit = 4,950 ft³/yr
Accommodating the eight houses at varying densities

Scenario A: 1 unit/acre
- Impervious cover = 20%
- Total runoff = 149,600 ft³/yr
- Runoff/house = 18,700 ft³/yr

Scenario B: 4 units/acre
- Impervious cover = 38%
- Total runoff = 49,600 ft³/yr
- Runoff/house = 6,200 ft³/yr

Scenario C: 8 units/acre
- Impervious cover = 65%
- Total runoff = 39,600 ft³/yr
- Runoff/house = 4,950 ft³/yr
Setting Stage for Transit
Required for Transit Corridors

- Dense, mixed-use nodes
- Walkable environments within ½ mile
- Ability to manage parking
Suggested Priorities
Suggested Priorities: Don’t

• Lose commercial alleys
• Close streets, lose connectivity
• Lose density
• Lose street trees

Sustainable Design Assessment Team
Center for Communities by Design
Suggested Priorities: Do

• Identify small number of neighborhood commercial centers:
 – Create ¼-mile pedestrian districts
 – Create on-street parking
• Develop a bicycle system plan to leverage your trail network